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Abstraa. We study a two-state version of the sandpile model of self-organized criticality. 
Instead of a critical height of stability as in the sandpile model, we introduce a hard core 
repulsion among different particles a t  the same position. In the case a f a  collision particles 
hop randomly to the nearest neighbours. Critical exponents obtained by numerical simula- 
tion show strong disagreement with the values theoretically predicted far the sandpile 
model but they are close to the numerical values of other models. 

Recently there has been seen a lot of interest in the study of self-organized criticality 
(soc) introduced by Bak, Tang and Wiesenfeld (BTW) [l]. In this new phenomenon 
a system under time evolution of its own dynamics reaches a critical state which lacks 
any characteristic length or time scales and obeys power law distributions. The critical 
state is independent of the arbitrary initial configuration to start with and unlike 
ordinary critical phenomena no fine tuning is necessary to arrive at this state. This 
state is called the self-organized critical state and BTW suggested that this phenomenon 
may be the underlying cause of a large class of phenomena involving dissipative 
nonlinear transport in open systems, such as l/f noise in electrical networks, light 
pulses from quasers etc [l]. However it was demonstrated later that generally the 
scaling of the lifetimes and sizes does not necessarily lead to a non-trivial power law 
for the power spectrum other than the 1/ f type variations [2,3]. Until now experi- 
mental works related to soc have been reported on sandpiles [4], water drops on 
window panes [SI and magnetic domain structures [6]. However, it should be mentioned 
that the criterion of the absence of a tuning parameter is also present in many other 
fractal growth phenomena established in the literature [7,8]. Recently it has been 
observed that the local conservation of particle number is not a necessary criterion to 
achieve the power law distributions [9]. 

BTW proposed a simple automaton model, popularly known as sandpile model [ 11, 
to explain this new phenomenon which is described below. Each site of a d-dimensional 
lattice is associated with an integer variable h which can be zero or positive. This 
quantity represents the number of sand grains in a column at that site. Starting from 
an arbitrary initial distribution of sand heights, one adds sand grains one at a time to 
a randomly chosen site of the lattice 

There is a critical value of the sand height h, at all sites and if h 2 h, at any site that 
sand column topples. As a result the height at that site reduces as 

(2) 

0305-4470/91/070363+07$03.50 0 1991 IOP Publishing Ltd L363 

hi -, hi - Z. 
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This amount of sand is distributed equally within the z nearest neighbours which gain 
one unit each 

hj+hi+l .  (3) 

In this way the particle number is conserved for topplings within the lattice; however, 
for toppling on the boundary sites some grains fall outside the boundary and never 
come back. After a long time this inflow (sand addition) and outflow (through the 
boundary) are equal on the average and the system reaches a steady state which is 
characterized by a fixed value of the average sand height. For toppling at a site the 
nearest neighbours gain sand grains. Some of them may reach the critical height h, 
which will topple on the next time step. In this way a cascade of topplings occurs 
forming an avalanche which has no  characteristic size s or lifetime f but their distribu- 
tions obey power law decays [ l ,  7 , 1 0 , 1 1 ]  

D ( s )  - sCi (4) 

D ( t ) - f - ’  ( 5 )  

and the average lifetime T, for cluster size s is scaled as 

T, - SI. (6 )  

The relation D ( f )  d f  - D ( s )  ds with equations (4)-(6) leads to the scaling relation [2] 

( 7 )  X( 1 - y )  = 1 - 7. 

Here we study a two-state version of the sandpile model. Consider a square lattice 
where the sites can be either empty or occupied with particles. No more than one 
particle is allowed to be at a site in the stationary state. One particle is added to one 
of the randomly chosen sites. If it is empty, it gets occupied by that particle and a new 
particle is launched. If there is already a particle at that site a ‘hard core interaction’ 
throws all the particles out from that site and the particles are redistributed in a random 
manner among its neighbours. It can happen that some of the neighbours were already 
occupied; then the particles are again redistributed and so on. In this way cascades 
are created. A cascade is stopped if no occupancy higher than one is present. Free 
boundaries are used, i.e. particles can leave the system on the boundaries. For this 
simulation we follow the cluster growth algorithm for the sandpile model described 
in [7]. Here h is the occupation number at a given site. We update the system in 
parallel through the following steps which all together constitute a unit time step: 

( a )  at any instant all collision sites are located; 
(b) all these sites are made empty; 
(c) for each particle in each collision site one neighbouring site is randomly selected 

(d)  collision sites for the next time step are located from these new sites. 
The cluster size s is measured by the total number of collisions in a cascade. One 

site may have many collisions in different times within the same cascade. The lifetime 
of a cascade is measured by the number of sweeps needed for the cascade to become 
quiet. If one starts with an empty lattice the particle density grows and reaches a 
stationary value p.. However one can start with a fully occupied lattice and just throw 
a particle to any site. A large cascade will result and the system will become steady 
when particle density has come down to pc .  

and the particle number at that site is increased by one; 
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Compared with the sandpile model we see that in our model h, = 2. The collisions 
are analogous to the topplings. At a collision particles are distributed randomly to the 
neighbouring sites in comparison with which each neighbour gets one particle for a 
toppling-in sandpile model. Therefore the time evolution of the cascade is random 
compared with the deterministic evolution of sandpile avalanche. 

We have studied this model numerically. We always start from an empty lattice 
and go on throwing particles one after another. Whenever there is a collision, we 
choose with equal probability a neighbouring site for each particle and the particle is 
transferred in that location. Initially the particle density grows with time and there is 
hardly any particle which goes out of the system. However, once the threshold density 
pc  is reached it no longer changes the average. On the average the net incoming flow 
rate becomes equal to the outflow. In this situation single particle addition causes 
cascades of all length scales and both in size and lifetimes. 

We first measure the variation of the threshold density with respect to the lattice 
size. Once we reach the critical state we measure the average density at fixed time 
intervals over many configurations. Similar to the sandpile model we get a linear fit 
to all points on a plot with 1/L (see figure 1)  with a slight curvature at small L values. 
This I / L  behaviour is due to the boundary effect, the average density on the boundary 
is less than the inner core region of the lattice [7]. After extrapolation to the L+co 
limit we get a value of p,=0.6832*0.0010 for the infinite system. 

0.6 
0 0.5 1 

l O O / I .  

Figure 1. Average threshold density p E  is platted with respect to 1 / L .  The extrapolated 
value for L-m is 0.6832*0.0010. 

At the critical state large numbers of cascades are considered, e.g., one million up 
to the lattice size L = 128 and 190 000,224 000 and 185 000 for the lattice sizes L = 256, 
512 and 1024 respectively. We measure the size distribution of these cascades by 
measuring the number of clusters corresponding to a particular size. These numbers 
are integrated over bins of lengths increasing exponentially; successive bin lengths 
vary by a factor 4, e.g. 1, 2, 4, 5 , 8 ,  10, 16, 22, 32, etc. For the initial bins successive 
ratios of bin lengths are far away from 4. As a result we get oscillations for small 
cluster sizes for both cluster size and lifetime distributions. The integrated probability 
distribution function D ( s )  obtained in this way is plotted in a double logarithmic scale 
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with size s (see figure 2) for different lattice sizes. We see that for each curve the 
middle region fits to a straight line but not the very small and very large cascade sizes. 
These straight portions for different curves fall on the same line. The largest straight 
portion is obviously for the largest lattice size L = 1024. We calculate the cluster size 
distribution exponent T by measuring the slope of the straight portion of the curve for 
L =  1024 (which gives us a value of 7-1) and obtain T =  1.28iO.02. 

In figure 3 we see a finite-size scaling of the cluster size distribution following 
Kadanoff er nl [12]. The cluster size probability distribution D(s, L) for a lattice size 
L is assumed to follow the scaling law 

D(s,  L )  = L-O.f(s/L"x). (8) 

log s 
10 

Figure 2. Double logarithmic plot of the cluster size probability distribution D(r) 
(integrated over bins) against cluster sire s. Curves staning from left to right correspond 
to L = 3 2 , 6 4 ,  128,256, 512 and 1024. 

Figure 3. Finite-size scaling plot of integrated cluster size probability distribution D(r)Lp* 
against s/L"* in a double logarithmic scale. For the collapse of data shown in this figure 
we used v, = 2.15 and 0, = 0.82. 
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We used our data integrated over bins for the cluster distribution D(s, L ) .  We therefore 
expect that the scaling function f ( x )  should behave f (x ) -x - ' "  for O N  x<< 1. As in 
this range of x values there should not be any strong lattice size dependence (other 
than a weak dependence of the amplitude on L) we relate the cluster size exponent T 
with the scaling exponents as T = (p, + U,)/ U,. We plot D(s, I)LBs against s/ L' using 
a double logarithmic scale in figure 3. We see a very good collapse of the data for all 
lattice sizes starting from L = 3 2  to 1024 on the same plot. Our best estimate for the 
exponents are v, = 2.75 and = 0.82. We calculate the value of the exponent T using 
these values of p. and U, as 1.30. This value of T is quite consistent with that obtained 
before which shows that the scaling works very well. 

In a similar way we study the lifetime distribution of the cascades. For big cascades 
the lifetimes are much smaller than the cluster size because at any time during the 
cascades a large number of sites have collisions all of which corresponds to a single 
time step. As a consequence our lifetime distribution is much shorter than the size 
distributions. On a double logarithmic plot of D(1) against I we still see considerable 
curvature (see figure 4). Our best estimate for the exponent y is 1.47*0.10. 

We also tried a scaling analysis for the integrated lifetime distribution as 

D(t, L ) =  L-pzf( t /L",) .  ( 9 )  

Plotting D(1, L)LBr against t / L " ,  on a double logarithmic scale as in figure 5 we see 
that best data collapse corresponds to U, = 1.55 and p, = 0.78. These values give the 
value of y = 1.50 which is again consistent with the previous estimate of y. 

I 

- 1  k 

Figure* Double logarithmic plot of the cluster lifetime distribution D(1) (integrated over 
bins) against lifetime I. Curves starting from left to right correspond to L=32, 64, 128. 
256, 512 and 1024. 

Finally we check whether the exponents T and y are consistent to each other. For 
that we calculate the exponent x studying the variation of T, with s. We calculate the 
average value of the lifetime T, for a bin s and plot it in a double logarithmic scale 
in figure 6. We see that for all lattice sizes the data points fall on one another. The 
combined curve is a nice straight line. We calculate the value of x = 0.56*0.02. Using 
the values of T = 1.28 and y = 1.47 and the scaling relation (7) one gets the value of x 
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Figure 5. Finite-size scaling plot of integrated cIuslec lifetime probability distribution 
D(t )LB*  against tlL’, in a double logarithmic scale. For the collapse of data shown in this 
figure we used Y, = 1.55 and 0, = 0.78. 

6 ’1 

lag s 
10 

Figure 6. Double logarithmic plot of the average lifetime T, against cluster size s. The 
value of the exponent x obtained from the slope is 0.56. 

as 0.60. Therefore we see that our estimated exponents are reasonably consistent with 
one another. 

Now we would like to compare our result with the results already known for the 
sandpile model. Our model is a variation of the sandpile model in which we introduce 
hard core repulsion between any two particles which forbids two or more particles to 
occupy the same position simultaneously. Therefore the steady state of the system is 
when all sites are either occupied or unoccupied. During a collision particles are 
distributed randomly in difference with the deterministic procedure during a toppling 
in sandpile model. In spite of these differences we believe that our model should be 
in the same universality class with the sandpile model. For the sandpile model initial 
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simulation studies [l]  and theoretical prediction by Zhang [ l l ]  using a continuum 
version of the model estimates the exponent T to be 1.  Later large-scale simulation of 
the same model [lo] estimated T to be 1.22. Here we get the value of T is 1.28 which 
is far away from the value 1 but close to the value 1.22. The lifetime exponent y = 1.47 
is to be compared with 1.38 in sandpile model [lo]. We believe these differences are 
results of finite size. 

I thank J Kertesz for useful discussions and H J Herrmann for a critical reading of 
the manuscript. 
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